Functional analysis of a Campylobacter jejuni alkaline phosphatase secreted via the Tat export machinery.

نویسندگان

  • Andries van Mourik
  • Nancy M C Bleumink-Pluym
  • Linda van Dijk
  • Jos P M van Putten
  • Marc M S M Wösten
چکیده

Bacterial alkaline phosphatases (PhoA) hydrolyse phosphate-containing substrates to provide the preferred phosphorus source inorganic phosphate (P(i)). Campylobacter jejuni does not contain a typical PhoA homologue but contains a phosphatase that is regulated by the two-component system PhosS/PhosR. Here we describe the characterization of the enzyme, its secretion pathway and its function in the bacterium's biology. Phosphatase assays showed that the enzyme utilizes exclusively phosphomonoesters as a substrate, requires Ca(2+) for its activity, and displays maximum activity at a pH of 10. Gene disruption revealed that it is the sole alkaline phosphatase in C. jejuni. The protein contained a twin-arginine motif (RR) at its N terminus, typical of substrates of the Tat secretion system. Substitution of the twin-arginine residues showed that they are essential for enzyme activity. C. jejuni genome analysis indicated the presence of four ubiquitously expressed Tat components that may form a functional Tat secretion system as well as 11 putative Tat substrates, including the alkaline phosphatase (PhoA(Cj)) and the nitrate reductase NapA. Inactivation of tatC caused defects in both PhoA(Cj) and NapA activity as well as a reduction in bacterial growth that were all restored by complementation in trans with an intact tatC copy. The atypical overall features of the PhoA(Cj) compared to Escherichia coli PhoA support the existence in prokaryotes of a separate group of Tat-dependent alkaline phosphatases, classified as the PhoX family.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

It takes two to tango: two TatA paralogues and two redox enzyme-specific chaperones are involved in the localization of twin-arginine translocase substrates in Campylobacter jejuni

The food-borne zoonotic pathogen Campylobacter jejuni has complex electron transport chains required for growth in the host, many of which contain cofactored periplasmic enzymes localized by the twin-arginine translocase (TAT). We report here the identification of two paralogues of the TatA translocase component in C. jejuni strain NCTC 11168, encoded by cj1176c (tatA1) and cj0786 (tatA2). Dele...

متن کامل

Identification of a Campylobacter jejuni-secreted protein required for maximal invasion of host cells

The food-borne pathogen Campylobacter jejuni is dependent on a functional flagellum for motility and the export of virulence proteins that promote maximal host cell invasion. Both the flagellar and non-flagellar proteins exported via the flagellar type III secretion system contain a sequence within the amino-terminus that directs their export from the bacterial cell. Accordingly, we developed a...

متن کامل

Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus.

Campylobacter jejuni, a gram-negative motile bacterium, secretes a set of proteins termed the Campylobacter invasion antigens (Cia proteins). The purpose of this study was to determine whether the flagellar apparatus serves as the export apparatus for the Cia proteins. Mutations were generated in five genes encoding three structural components of the flagella, the flagellar basal body (flgB and...

متن کامل

Production of secretory and extracellular N-linked glycoproteins in Escherichia coli.

The Campylobacter jejuni pgl gene cluster encodes a complete N-linked protein glycosylation pathway that can be functionally transferred into Escherichia coli. In this system, we analyzed the interplay between N-linked glycosylation, membrane translocation and folding of acceptor proteins in bacteria. We developed a recombinant N-glycan acceptor peptide tag that permits N-linked glycosylation o...

متن کامل

Detection of cytolethal distending toxin (cdt) Genes in Campylobacter jejuni and Campylobacter coli isolated from the intestinal of commercial broiler chickens, turkey and quail of Iran

Background: Campylobacter jejuni and Campylobacter coli are zoonotic bacteria which are frequently associated with human diarrhea. Sharing of the cytolethal distending toxin (cdt) genes in Campylobacter is common and is considered species specific. OBJECTIVES: In this study we focused on detecting the presence of cdt gene in C. jejuni and C. coli isolated from broilers, turkeys and quails of Ir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microbiology

دوره 154 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2008